
AES Candidates: A Survey of Implementations

Helger Lipmaa1

Küberneetika AS; Akadeemia 21, 12617 Tallinn, Estonia
helger@cyber.ee

Abstract. We present a cross-table of almost all publicly known implementa-
tions of AES candidates, including the ones done by the authors. A short overview
of our own implementations of Rijndael is given. The relative easiness of doing
“the world best” implementations and a lot of gaps in the table force us to ask
if there is enough information known to really decide which ciphers are fast and
which are not. (This paper only compares theencryptionspeed in the case of the
128-bit keys.)
In the conclusions we present a very brief survey of the known attacks to the can-
didates, stressing the fact that other aspects of the candidates are still less known
(at least to the public). We finish this paper with apparent conclusions that the first
round of the AES process has been too short, but we still give recommendations
which candidates should be elected to the second round basing on the knowledge
known to the public at the moment of writing this paper.

1 Introduction

The author of this paper has been keeping a cross-table [Lip99] for all1 (the known)
implementations of the AES candidates since the July 1998, receiving a huge feedback
for a number of persons. This experience has taught us that there exist pairs (proces-
sor,candidate), for what no implementations are known. Most notable was the lack of
the Pentium II assembler numbers of DEAL, MARS and Rijndael, but there were (and
are) also many missing implementations on the Pentium II Borland C++ (the NIST
standard platform). In an vain attempt to fill up some gaps, we tested Brian Gladman’s
implementations on a UltraSPARC II machine. Thereafter we concentrated on finish-
ing Rijndael implementations for several platforms. Our three implementations (done
during three days) are the best known for the corresponding (processor,language) pair,
and yet not fully optimized. This fact stress, as we believe, the incompleteness of the
current table and therefore also the fact the available information is not sufficient to
answer reliable to the question which ciphers are fast and which are not.

Still, there is something that can be said based on this table. There are some ciphers
that are extremely fast and others that are relatively slow. There are some ciphers that
are fast on every platform and others that are optimized for the AES test platform (Pen-
tium II) and therefore somewhat slower on other types of processors. We will state our
knowledge by providing some tables. Thereafter we focus on our own implementations
of Rijndael, which is a cipher of our choice for several completely different reasons.

1 Note that we do not discuss Magenta and Loki97 that were broken before the end of the AES1
Conference in August 1998.



2 AES: A Survey of Implementations

Later we give a very brief overview of the known attacks against all the candidates,
stressing the fact that other aspects of the candidates are still less known (at least to
the public). We finish this paper with apparent conclusions that the first round of the
AES process has been too short and give recommendations which candidates should be
elected to the second round basing on the knowledge known to the public at the moment
of writing this paper.

2 The Implementation Cross-Table

2.1 Explanation to The Table

The cross table of tuples (processor,compiler,candidate cipher) for (almost) all known
implementations is presented in Table 1. The entries are of form “x C (I)”, wherex is
the number of cycles per 128-bit block, C is the optional compiler and “(I)” is the op-
tional implementer. For example, in the row “Pentium II/BC++ 5.0” and in the column
“E2” the entry 711 means that the best known implementation of E2 on the Pentium
Pro/Pentium II (using the BC++ 5.0 compiler) takes 711 cycles to encrypt one block.

There are some exceptions. Brian Gladman’s2 original implementations (optimized
for the Pentium II) have been ported to Pentium (by Brian himself from an old version
of his source code), UltraSPARC-II (by Helger Lipmaa, using Sun C WorkShop 5.0),
to the Alpha AXP 21164 ([Gra99], using DEC CC and gcc 2.8.1), to Hewlett-Packard
PA7000 [Gra99], to the Alpha AXP 21264 ([Gra99], DEC CC). We decided to cite all
these ports. Our feeling is that it will help to grasp how much does it cost just to port a
cipher to another platform. (As seen by comparing entries in those rows the speed ratio
of some ciphers depends very heavily on the processor used). There’s also a separate
row is for Kenneth Almquist’s [Alm99]estimationsof speeds at AXP 21164.

2.2 Quoted Numbers

Most of the estimates are still from the original papers submitted to the First AES
Candidate Conference. Exceptions are:

DFC The Alpha C implementations are from [Har99]; the C implementations for Ultra-
SPARC and SPARC 170 are by Fabrice Noilhan. The P2 assembler implementation
is by Terje Mathisen.

E2 Some numbers are from its homepage.
RC6 The assembly implementation is by Ted Krovetz. Some of the other data have

been taken from its homepage.
Rijndael Rijndael’s Pentium II assembler, Pentium II (egcs) and UltraSPARC-II (Sun

C) implementations are by Helger Lipmaa.

2 The data given in Table 1 differs somewhat from [Gla99]. The main reason is that the data
here also includes the endianness conversion times. Another difference is that I only provide
128-bit keyencryptiontimes, not mean of encryption and decryption. We have performed no
check of the correctness of his or any other parties implementations. Our numbers are based
on the (hopefully justified) trust in the implementers.



Helger Lipmaa 3

Machine/
compiler

CAST-
256

Crypton DEAL DFC E2 Frog MARS RC6 Rijndael Safer+ Serpent Twofish HPC

32-bit software
Pentium Pro/Pentium II

BC++ 5.0 1790 711 2600 920 616 � 775 1738 640 3500

MSVC 475 (5.0) 2432
(4.0)

�262
(DS 97)

2080
(5.0)

DJGPP/ egcs/
gcc

390
(djgpp)

370 egcs,
[Lip99]

assembly 815 390 480 (TM) 415 243 (TK) 282
[Lip99]

258

[Gla99]
MVC++ 6.0

668 478 2339 1688 734 2572 376 270 374 1746 992 378 1468

Pentium
MVC++ 6.0,
*

1131 816 3172 1079 760 758 702 2449 1279 673

assembly 320 290
EGCS 1.0.2 950

Alpha AXP 21164
DEC CC 323

[Har99]
�420

gcc 366
[Har99]

490 (LG)

DEC CC, * 749 499 2752 1230 679 2752 507 559 516 1502 998 490 930
gcc 2.8.1, * 979 593 2928 1946 813 4197 771 625 617 3347 1444 511 3372
asm 587 600
asm [Alm99] 600 408 2528 304 471 478 467 340 656 915 360 380

SPARC
Sun C 5.0, * 694 477 2781 2692 711 2337 840 1161 334 3002 996 487 1465
Ultra-SPARC
C

1180 615 910 328
[Lip99]

750 450
[Gra99]

Sparc 170 C 969
Sparc 170
asm

802

Other (RISC, 680x0,...)
HP PA7000,
*

1275 865 3940 2435 990 2620 950 1085 735 5085 1345 755 1315

AXP 21264,
*

615 353 2010 232
[Har99]

510 3750 450 382 285 929 855 315 420
(LG)

PPC
604e/750
C

300 590

Strong-ARM
asm

560
[Har99]

68040 C 3500

Table 1.The Cross-Table of All Known Implementations.



4 AES: A Survey of Implementations

Safer+ The Borland C++ implementation data is taken from the recent posting of Lily
Chen on http://aes.nist.gov where the speed was stated to be 33 Mbit/s.

Twofish Assembly data is taken from a posting of Doug Whiting on http://aes.nist.gov.
One-man implementations Already mentioned separate rows for [Gla99], its ports

(marked with “*”) and for [Alm99].

We left the hardware estimations and the timings for 8-bit processors (a survey of
which is present in [Lip99] and in [SKW+99]) as still yet very incomplete (we have
been unable to obtain estimations for 7 ciphers out of 13!). We would like to stress once
more that what “we know” is not equal to “what exists.” The entries in Table 1 should
mostly be taken just as upper bounds (or lower bounds, in the case of [Alm99]) for
implementations.

3 Sorted Table

Table 1 contains all the data we were able to obtain and it is far from being perfect.
It is certainly not complete. It is not comprehensive. But still, we can draw some con-
clusions. Namely, at least one implementation of every candidate is known for at least
three different platforms: Intel’s Pentium II, Sun’s UltraSPARC and Compaq’s Alpha
AXP 211643. The numbers corresponding to thebestknown implementations on the
three platforms is presented in Table 2.

Cipher Pentium IIAlpha SPARC x
Rijndael 284 490 328 367:3
Twofish 258 490 487 411:7
Crypton 390 499 477 455:3
DFC 480 323 802 535:0
E2 415 587 711 571:0
MARS 376 507 840 574:3
RC6 243 559 1161 654:3
CAST-256 668 749 694 703:3
HPC 1468� 420 450 779:3
Serpent 992 998 992 994:0
Safer+ � 775 1502 3002 1759:7
Frog 2572 2752 2337 2553:7
DEAL 2339 2752 2781 2624:0

Table 2.Speeds of the best known implementations of 13 AES candidates on the Pentium II, the
Alpha and the UltraSPARC. The candidates are ordered by the average number over the three
platforms.

To get a “fair” representation of the efficiency of different candidates, we sorted
Table 2 in the order of the average value of these three implementations. There are

3 We omitted PA7000 and AXP 21264 because these platforms did not have any implementations
by authors. Inclusion of this data would not have changed the order significantly.



Helger Lipmaa 5

several reasons for that. At first, while by far the most popular processor at this moment
is the Pentium II, it will with high probability not be the standard after five years. Intel’s
plans to supersede the Pentium family with the new 64-bit architecture IA64 have been
known to the public for a while. While the Alpha and the SPARC architectures are not
as popular as the Pentium II, they can be seen as (typical) representatives of the 64-bit
processors and therefore should definitely be accounted. On the other hand, inclusion
of the Pentium II is still a must not only because of it’s popularity but also because it
is necessary to compare the performances on completely different architectures — the
select AES cipher has to be efficient on machines having different endianness and word
length.

Let us state some evident conclusions. At first, performance of some ciphers is al-
most the same on the Alpha AXP 21164 and UltraSPARC. It is a consequence of the
usage of the same set of sources [Gla99] but also from the many similarities between the
Alpha and SPARC as 64-bit RISC architectures. Twofish, Crypton, CAST-256, HPC,
Serpent, Frog and DEAL fall into this class. For some ciphers, Alpha performance is
much better. In the case of Rijndael, the difference is probably due to the bad code (Ri-
jndael should be at least 1:2 times faster than Crypton, i.e.,< 415 cycles on Alpha; by
the same reasoning Crypton we estimate a hand-optimized implementation of Crypton
on the Pentium II to take about 340 cycles). In the case of DFC, a lot of work [Har99]
has been done to achieve fast implementations on Alpha. MARS and RC6 suffer on the
UltraSPARC due to the their heave use multiplication and data-dependent rotation (cf
[SKW+99]).

Comparing the Pentium II to 64-bit architectures one notices immediately that some
ciphers (RC6, MARS) are optimized for the Pentium II and that some (DFC, HPC) are
optimized for 64-bit architectures, while performances of the majority of ciphers are
similar on all architectures.

Thus, some ciphers that are very fast on very architecture: Rijndael, Twofish, Cryp-
ton, DFC, E2 and MARS. Three ciphers are slow on every architecture: Safer+, Frog
and DEAL. Others are in between. Including RC6 (contrary to the public belief).

4 Our Choice: Rijndael

We decided to concentrate our own efforts on Rijndael by several reasons. Of course,
it is fast (the fastest in Table 2). It is (as far as we know) the fastest cipher on PA7000
and the second fastest on AXP 21264. It’s inner parallelism is almost unlimited (16!).
It is suitable for a wide range of architectures due to it’s simplicity (it does not use
any specific 32- or 64-bit operations, unlike DFC, MARS, RC6, . . . ), it is likely to be
extremely efficient in hardware. While 192-bit and 256-bit key versions of Rijndael
take more time due to the added rounds, it is compensated by the designers choice
to allow a variety of block lengths. The same implementation that takes 284 cycles
per 128=128 (key/block) Rijndael encryption would take (an estimated) 392 cycles per
256=256 Rijndael encryption (or 196 cycles per 128-bit block).

Of course, speed alone does not matter. More important is the fact that Square
[DKR97] — the cipher Rijndael bases on — has been unbroken for two years, four
times the period it has been since most of other ciphers were published. The design



6 AES: A Survey of Implementations

strategy of Square seems to guarantee that the cipher will stay secure (until a completely
new kind of cryptographic attack is found), and Rijndael should be much more secure
than Square. Although there is a number of other ciphers, against which no significant
attack has been mounted (Sect. 5), we feel that only DFC, E2 and Serpent have the same
security level. And the third consideration is just the fact that Rijndael is unpatented.

Summarizing the desiderata we found Rijndael to be the best overall candidate to
start work on. During this work, we completed three different implementations of Ri-
jndael. The first, a (still not fully) hand-optimized assembler implementation took two
days and based on the fact that the Pentium II is good at handling bytes. The second
implementation (egcs, Pentium II), took about two hours, and needed a completely dif-
ferent approach due to the sub-optimality of egcs when handling 8-bit data. The (another
not fully optimized) result (370 cycles) was better than Brian Gladman’s implementa-
tion using the commercial MS VC++ compiler (Gladman’s implementation took 456
cycles with egcs, for example). The third (even less optimized) implementation took
about 20 minutes to finish, and makes 328 cycles on UltraSPARC-II with Sun C 5.0
(336 cycles per Gladman’s code).

Our timing routines use the standard C library functiontimes around a long loop.
We estimate that the inner code of Rijndael takes at least 5 less cycles on the Pentium
II if we exclude this overhead.

We expect Rijndael to be fast on other platforms as well. It performs very fast in the
smartcards [DR98] and in the hardware [SKW+99].

5 Conclusions

We wrote (from scratch) 3 different optimized implementations of Rijndael in about
two days that happen also be the best known implementations for the given (proces-
sor,language) pair. The code can still be bettered, and it wasn’t terrible hard. Just no
one had done it. And yet, implementing candidates is at this moment what everyone
does. There hasn’t been a lot of successful cryptanalysis during last 3-4 months. Which
only stresses the fact that the period before the 2nd round is too short.

What is known? Loki, Frog and Magenta and DEAL have been broken. A small
attack is known against the MARS key schedule. An attack to Crypton’s key schedule
and a known weirdness of Crypton’s S-boxes (the last has no known cryptographic
applications). Thus, there are 9 ciphers with no known attacks (better than those given
in submissions). The attacks against MARS and Crypton do not count much. Leaves
11.

From those, Serpent and Safer+ can be eliminated because of their low performance.
May be we could use the same reason to eliminate CAST-256. Leaves 8. HPC is slow
on the Pentium II, but it is fairly fast on Alpha and UltraSPARC. Don Coppersmith’s
reasoning on AES Discussion Groups is not sufficiently formal to be a reason for dis-
gracing HPC. Almost the same (to some less extent) is true for DFC: it has average
performance on the Pentium II, but it is very fast on Alpha. Don Coppersmith’s com-
ments on AES Discussion Groups are not resolute enough.

The mistakes in Crypton, HPC, DFC and MARS are very subtle. So, there are 8
candidates: RC6, Twofish, Rijndael, E2, Crypton, DFC, MARS, HPC. Hard choice.



Helger Lipmaa 7

The first four do not have (yet)any later discovered weaknesses, the first three of them
are very fast. But there is nogoodreasons to prefer DFC to Crypton or vise versa.

To conclude the paper, we will note a curious fact. None of the AES candidates
seems to get any serious benefit from the multimedia architectures (Intel’s MMX, Sun’s
VIS, . . . ). Some of the candidates (MARS [BCD+98] and RC6 [RRSY98]) rely on the
32-bit unsigned multiplication. The reasoning of the authors is that such multiplication
is very cheap on nowadays common microprocessors. This claim is indeed true, but the
best known multimedia technologies cannot be used to accelerate these ciphers because
of the lack of a 32-bit parallel multiplication. There is a certain tradeoff (and even
a contradiction) here. MARS and RC6 are optimized for the new 32-bit processors
(mainly for the Pentium II; as it was already noted, these ciphers are far from optimal
on other architectures), utilizing fully the 32-bit operations provided by such processors.
At the same time, these ciphers ignore the multimedia extensions existing in the very
same processors.

Most of the candidates use some form ofS-boxes and/or lookup tables and do not
take major advantage from the multimedia extensions of MMX (though they could ben-
efit from the larger cache or word-size) as the MMX registers cannot be used as memory
pointers. Parallelization of these ciphers would need accessing several ‘randomly” cho-
sen memory cells simultaneously [Lip98].

6 Acknowledgments

Thank you to Kenneth Almquist, Lily Chen, Jim Foti, Brian Gladman, Louis Granboulan,
Robert Harley, Terje Mathisen, Fabrice Noilhan, Richard Outerbridge, Richard Schroep-
pel, Serge Vaudenay, who all have contributed to my effort of keeping the page [Lip99].

References

[Alm99] Kenneth Almquist. Aes candidate performance on the alpha 21164 processor (ver-
sion 2). Unpublished, a posting fromsci.crypt . Information available from
http://home.cyber.ee/helger/aes/kenneth.txt , January 1999.

[BCD+98] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro, Shai
Halevi, Charanjit Jutla, Stephen M. Matyas Jr., Luke O’Connor, Mohammad Peyra-
vian, David Safford, and Nevenko Zunic. Mars — a candidate cipher for aes. Avail-
able athttp://www.research.ibm.com/security/mars.html , June 1998.

[DKR97] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block cipher square. In
Eli Biham, editor,Fast Software Encryption ’97, volume 1267 ofLecture Notes in
Computer Science, pages 149–165, Haifa, Israel, January 1997. Springer-Verlag.

[DR98] Joan Daemen and Vincent Rijmen. The block cipher Rijndael. InThird Smard Card
Research and Advanced Applications Conference Proceedings, 1998. To appear.

[Gla99] Brian Gladman. AES algorithm efficiency. Unpublished. Information available from
http://www.seven77.demon.co.uk/aes.htm , January 1999.

[Gra99] Louis Granboulan. AES: Analysis of the submissions. Unpublished. Information
available fromhttp://www.dmi.ens.fr/ granboul/recherche/AES.html , Jan-
uary 1999.

[Har99] Robert Harley. Personal communication. January 1999.



8 AES: A Survey of Implementations

[Lip98] Helger Lipmaa. IDEA: A cipher for multimedia architectures? InSelected Areas in
Cryptography ’98, Lecture Notes in Computer Science, Kingston, Canada, August
1998. Springer-Verlag. To appear.

[Lip99] Helger Lipmaa. AES candidates: A survey of implementations. An on-line table.
Information available fromhttp://home.cyber.ee/helger/aes/ , January 1999.

[RRSY98] Ronald L. Rivest, Matt J. B. Robshaw, R. Sidney, and Y. L. Yin. The rc6 block cipher.
Available athttp://theory.lcs.mit.edu/˜rivest/rc6.ps , June 1998.

[SKW+99] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, and Chris Hall. Per-
formance comparison of the AES submissions. Unpublished. Information available
from http://www.counterpane.com , January 1999.


